题目内容

(极坐标与参数方程)在极坐标系中,已知曲线C的方程是ρ=4sinθ,过点(4,
π
6
)
作曲线C的切线,则切线长等于
2
2
2
2
分析:先将原极坐标方程是ρ=4sinθ两边同乘以ρ后化成直角坐标方程,点(4,
π
6
)
的坐标化成直角坐标,再利用直角坐标方程结合圆的几何性质进行求解即可.
解答:解:∵曲线C的直角方程是x2+(y-2)2=4,圆心C(0,2),半径BC=2.
(4,
π
6
)
的直角坐标是A(2
3
,2),
如图,在直角三角形ABC中,
切线长AB=
AC2-BC2
=
(2
3
)2-22
=2
2

故答案为:2
2
点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即可进行极坐标和直角坐标的互化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网