题目内容
【题目】某商场经营一批进价为30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下所表示的关系.
x | … | 30 | 40 | 45 | 50 | … |
y | … | 60 | 30 | 15 | 0 | … |
(1)在所给的坐标系中,如图,根据表格提供的数据描出实数对(x,y)的对应点,并确定y与x的一个函数关系式y=f(x);
(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少时,才能获得最大日销售利润?
【答案】(1)y=-3x+150,(x∈N);(2)销售价为40元时,才能获得最大利润.
【解析】试题分析:(1)由题意画出所给的点,结合题意求解一次函数的解析式即可;
(2)结合(1)的结论和二次函数的性质整理计算即可求得最终结果.
试题解析:
(1)由表作出点(30,60),(40,30),(45,15),(50,0).如图,它们近似地在一条直线上,设它们共线于直线y=kx+b,
∴解得
∴y=-3x+150,(x∈N).
经检验(30,60),(40,30)也在此直线上.
∴所求函数解析式为y=-3x+150,(x∈N).
(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300,
当x=40时,P有最大值300,故销售价为40元时,才能获得最大利润.
【题目】(本小题12分)根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
]
组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.