题目内容
【题目】若二次函数f(x)满足f(x+1)﹣f(x)=4x+6,且f(0)=3.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设g(x)=f(x)+(a﹣2)x2+(2a+2)x,g(x)在[﹣2,+∞)单调递增,求a的取值范围.
【答案】(Ⅰ)f(x)=2x2+4x+3;(Ⅱ)[0,3]
【解析】
(I)采用待定系数法即可求解;
(II)先将表达式化简,得,再对参数进行分类讨论,分为一次函数和二次函数两种情况求解,当函数为二次函数时,结合开口和对称轴的关系判断即可
(I)设f(x)=ax2+bx+c,(a≠0),∵f(x+1)﹣f(x)=4x+6,且f(0)=3,
∴a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=4x+6,且c=3,整理可得,2ax+a+b=4x+6,
∴2a=4,a+b=6,c=3,∴a=2,b=4,c=3,∴f(x)=2x2+4x+3;
(II)由(Ⅰ)可知,g(x)=f(x)+(a﹣2)x2+(2a+2)x=ax2+(2a+6)x+3,
当a=0时,g(x)=6x+3在[﹣2,+∞)单调递增,符合题意,
当a≠0时,对称轴x,由g(x)在[﹣2,+∞)单调递增可得,,解可得,0<a≤3,
综上可得,a的范围[0,3].
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
包裹重量(单位:) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如下表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?
【题目】某学校在九年级上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图),且规定计分规则如下表:
每分钟跳绳个数 | ||||
得分 | 17 | 18 | 19 | 20 |
(1)请估计学生的跳绳个数的众数和平均数(保留整数);
(2)若从跳绳个数在,两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求2人得分之和不大于34分的概率.