题目内容
【题目】已知椭圆:与轴交于,两点,为椭圆的左焦点,且是边长为2的等边三角形.
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于不同的两点,,点关于轴的对称点为(与,都不重合),判断直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
【答案】(1);(2),证明见详解
【解析】
(1)由题意可得,由△是边长为2的等边三角形,可得,,进而得到椭圆方程;
(2)设出直线的方程和,的坐标,则可知的坐标,进而表示出的直线方程,再联立方程与椭圆方程,即可把代入求得,结合韦达定理进行化简,进而得出直线与轴交于定点.
(1)由题意可得,,,
,
由△是边长为2的等边三角形,可得,
,即,
则椭圆的方程为;
(2)由题可知直线的斜率不为0,故设直线的方程为:,
联立,
得,即(),
设,,,,则,,
又,,
经过点,,,的直线方程为,
令,则,
又,.
当时,.
故直线与轴交于定点.
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望;
(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:,,,.
参考公式:相关系数,,.