题目内容
【题目】已知椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 过F2作一条直线(不与x轴垂直)与椭圆交于A,B两点,如果△ABF1恰好为等腰直角三角形,该直线的斜率为( )
A.±1
B.±2
C.
D.
【答案】C
【解析】解:可设|F1F2|=2c,|AF1|=m,
若△ABF1构成以A为直角顶点的等腰直角三角形,
则|AB|=|AF1|=m,|BF1|= m,
由椭圆的定义可得△ABF1的周长为4a,
即有4a=2m+ m,即m=2(2﹣ )a,
∴|AF1|=2(2﹣ )a,
则|AF2|=2a﹣m=(2 ﹣2)a,
在Rt△AF1F2中,
tan∠AF2F1= = ,
∴直线AB的斜率为k=±tan∠AF2F1=± ,
故选:C.
【题目】某理财公司有两种理财产品A和B.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立): 产品A产品B(其中p、q>0)
投资结果 | 获利40% | 不赔不赚 | 亏损20% |
概率 |
投资结果 | 获利20% | 不赔不赚 | 亏损10% |
概率 | p |
(1)已知甲、乙两人分别选择了产品A和产品B进行投资,如果一年后他们中至少有一人获利的概率大于 ,求p的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品A和产品B之中选其一,应选用哪个?
【题目】当今信息时代,众多中小学生也配上了手机.某机构为研究经常使用手机是否对学习成绩有影响,在某校高三年级50名理科生第人的10次数学考成绩中随机抽取一次成绩,用茎叶图表示如图:
(1)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
及格(60及60以上) | 不及格 | 合计 | |
很少使用手机 | |||
经常使用手机 | |||
合计 |
(2)从50人中,选取一名很少使用手机的同学(记为甲)和一名经常使用手机的同学(记为乙)解一道函数题,甲、乙独立解决此题的概率分别为P1 , P2 , P2=0.4,若P1﹣P2≥0.3,则此二人适合为学习上互帮互助的“对子”,记X为两人中解决此题的人数,若E(X)=1.12,问两人是否适合结为“对子”? 参考公式及数据: ,其中n=a+b+c+d
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
【题目】抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:
学生 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 65 | 80 | 70 | 85 | 75 |
乙 | 80 | 70 | 75 | 80 | 70 |
则成绩较为稳定(方差较小)的那位学生成绩的方差为 .