题目内容

【题目】如图,在海岸线一侧处有一个美丽的小岛,某旅游公司为方便游客,在上设立了两个报名点,满足中任意两点间的距离为.公司拟按以下思路运作:先将两处游客分别乘车集中到之间的中转点(异于两点),然后乘同一艘轮游轮前往岛.据统计,每批游客处需发车2辆, 处需发车4辆,每辆汽车每千米耗费元,游轮每千米耗费元.(其中是正常数)设,每批游客从各自报名点到岛所需运输成本为元.

(1) 写出关于的函数表达式,并指出的取值范围;

(2) 问:中转点距离处多远时, 最小?

【答案】(1) ;(2).

【解析】试题分析:(1)在中,求出相关的角,利用正弦定理,求出,表示出所需运输成本为元关于的函数表达式;(2)利用函数表达式,求出函数的导数,通过导数的符号,判断单调性求解函数的最值.

试题解析(1) 由题知在ACD中,CADCDAαAC10ACDα.

由正弦定理知

CD AD

所以S4aAD8aBD12aCD(12CD4AD80)a

a80a a60a

(2) S20

S0cos α

cos α>时,S′<0 cos α<时,S′>0

所以当cos α时,S取得最小值,

此时sin αAD5

所以中转点CAkm时,运输成本S最小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网