题目内容
【题目】如图,在海岸线一侧处有一个美丽的小岛,某旅游公司为方便游客,在上设立了两个报名点,满足中任意两点间的距离为.公司拟按以下思路运作:先将两处游客分别乘车集中到之间的中转点处(点异于两点),然后乘同一艘轮游轮前往岛.据统计,每批游客处需发车2辆, 处需发车4辆,每辆汽车每千米耗费元,游轮每千米耗费元.(其中是正常数)设∠,每批游客从各自报名点到岛所需运输成本为元.
(1) 写出关于的函数表达式,并指出的取值范围;
(2) 问:中转点距离处多远时, 最小?
【答案】(1) ;(2).
【解析】试题分析:(1)在中,求出相关的角,利用正弦定理,求出,表示出所需运输成本为元关于的函数表达式;(2)利用函数表达式,求出函数的导数,通过导数的符号,判断单调性求解函数的最值.
试题解析:(1) 由题知在△ACD中,∠CAD=,∠CDA=α,AC=10,∠ACD=-α.
由正弦定理知,
即CD=, AD=,
所以S=4aAD+8aBD+12aCD= (12CD-4AD+80)a
=a+80a =a+60a
(2) S′=20 ,
令S′=0得cos α=
当cos α>时,S′<0; 当cos α<时,S′>0,
所以当cos α=时,S取得最小值,
此时sin α=,AD==5+,
所以中转点C距A处km时,运输成本S最小.
练习册系列答案
相关题目