题目内容
【题目】已知函数f(x)=x3+ax2+bx+c在x与x=1时都取得极值,求a,b的值与函数f(x)的单调区间.
【答案】a,b=﹣2,f(x)的递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).
【解析】
对f(x)求导,导函数在x与x=1函数值为0,求解a,b,分析导函数正负,从而得到函数f(x)的单调区间.
解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b
由f′()a+b=0,f′(1)=3+2a+b=0
解得,a,b=﹣2.
f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),函数f(x)的单调区间如下表:
X | (﹣∞,) |
| (,1) | 1 | (1,+∞) |
f′(x) | + | 0 | ﹣ | 0 | + |
f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
所以函数f(x)的递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).
练习册系列答案
相关题目