题目内容
1.已知曲线C:x2-xy+y2=3,矩阵$M=({\begin{array}{l}{\frac{{\sqrt{2}}}{2}}&{\frac{{\sqrt{2}}}{2}}\\{-\frac{{\sqrt{2}}}{2}}&{\frac{{\sqrt{2}}}{2}}\end{array}})$,且曲线C在矩阵M对应的变换的作用下得到曲线C′.(Ⅰ)求曲线C′的方程;
(Ⅱ)求曲线C的离心率以及焦点坐标.
分析 (Ⅰ)利用变换的定义直接计算即可;
(Ⅱ)通过(I)可知曲线C′的离心率及焦点坐标,利用逆矩阵可得结论.
解答 解:(Ⅰ)设曲线C′上的任一点P(x,y)在矩阵M对应的变换作用下变为点P′(x′,y′),
则有$(\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{x′}\\{y′}\end{array})$,即$\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y}\\{y′=-\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y}\end{array}\right.$,
所以$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}x′-\frac{\sqrt{2}}{2}y′}\\{y=\frac{\sqrt{2}}{2}x′+\frac{\sqrt{2}}{2}y′}\end{array}\right.$,
将上式代入曲线C的方程,整理得$\frac{x{′}^{2}}{6}+\frac{y{′}^{2}}{2}=1$,
∴曲线C′的方程为$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;
(Ⅱ)由(I)可知曲线C′的离心率$e=\frac{\sqrt{6}}{3}$,焦点坐标为F1′(-2,0),F2′(2,0),
∵M=$(\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array})$对应的变换是顺时针旋转$\frac{π}{4}$的旋转变换,
∴M-1=$(\begin{array}{l}{\frac{\sqrt{2}}{2}}&{-\frac{\sqrt{2}}{2}}\\{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array})$对应的变换是逆时针旋转$\frac{π}{4}$的旋转变换,
∴曲线C的离心率为$\frac{\sqrt{6}}{3}$,且曲线C的焦点是曲线C′的焦点经过逆时针旋转$\frac{π}{4}$得到.
∵$(\begin{array}{l}{\frac{\sqrt{2}}{2}}&{-\frac{\sqrt{2}}{2}}\\{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array})$$(\begin{array}{l}{-2}\\{0}\end{array})$=$(\begin{array}{l}{-\sqrt{2}}\\{-\sqrt{2}}\end{array})$$(\begin{array}{l}{\frac{\sqrt{2}}{2}}&{-\frac{\sqrt{2}}{2}}\\{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array})$$(\begin{array}{l}{2}\\{0}\end{array})$=$(\begin{array}{l}{\sqrt{2}}\\{\sqrt{2}}\end{array})$,
∴曲线C的焦点为($-\sqrt{2}$,$-\sqrt{2}$),($\sqrt{2}$,$\sqrt{2}$).
点评 本题考查矩阵与变换、逆矩阵等基础知识,考查运算求解能力,考查化归与转化思想,注意解题方法的积累,属于中档题.
日期 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
空气质量指数 | 79 | 45 | 60 | 155 | 210 | 209 | 160 |
日期 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
空气质量指数 | 90 | 78 | 150 | 123 | 96 | 90 | 180 |
(2)设x表示专家组停留期间空气质量优良的天数,求x的分布列和数学期望.