题目内容
【题目】已知圆与圆相外切,且与直线相切.
(1)记圆心的轨迹为曲线,求的方程;
(2)过点的两条直线与曲线分别相交于点和,线段和的中点分别为.如果直线与的斜率之积等于1,求证:直线经过定点.
【答案】(1)(2)见解析
【解析】
(1)根据抛物线定义可知圆心的轨迹为抛物线,进而可得其轨迹方程.
(2)由题意可设直线的斜率为,则直线的斜率为,表示出直线的方程,联立直线与抛物线方程即可求得交点的坐标,进而以代替点坐标中的,可得点的坐标;即可表示出直线的斜率及其方程,进而得所过定点的坐标.
(1)依题意等于到直线的距离,
故所求轨迹是以为焦点,以为准线的抛物线.
故其轨迹的方程为.
(2)依题意直线斜率都存在且均不为,
故设直线的斜率为,则直线的斜率为.
直线的方程为,
即为.
由消去整理得,
所以,点的坐标为,
以代替点坐标中的,可得点的坐标为,
所以直线的斜率,
所以直线的方程为,
即.
故经过定点.
【题目】“业务技能测试”是量化考核员工绩效等级的一项重要参考依据.某公司为量化考核员工绩效等级设计了A,B两套测试方案,现各抽取名员工参加A,B两套测试方案的预测试,统计成绩(满分分),得到如下频率分布表.
成绩频率 | |||||||
方案A | |||||||
方案B |
(1)从预测试成绩在的员工中随机抽取人,记参加方案A的人数为,求的最有可能的取值;
(2)由于方案A的预测试成绩更接近正态分布,该公司选择方案A进行业务技能测试.测试后,公司统计了若干部门测试的平均成绩与绩效等级优秀率,如下表所示:
根据数据绘制散点图,初步判断,选用作为回归方程.令,经计算得,,.
(ⅰ)若某部门测试的平均成绩为,则其绩效等级优秀率的预报值为多少?
(ⅱ)根据统计分析,大致认为各部门测试平均成绩,其中近似为样本平均数,近似为样本方差,求某个部门绩效等级优秀率不低于的概率为多少?
参考公式与数据:(1),,.
(2)线性回归方程中,,.
(3)若随机变量,则,,.