题目内容
【题目】如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有( )
A. 4个B. 3个C. 2个D. 1个
【答案】A
【解析】
由题意得出三角形ABC是直角三角形,根据线面垂直的性质定理得出PA垂直于AC,BC,从而得出两个直角三角形,又可证明BC垂直于平面PAC,从而得出三角形PBC也是直角三角形,从而问题解决.
∵AB是圆O的直径
∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形
又∵PA⊥圆O所在平面,
∴△PAC,△PAB是直角三角形.
且BC在这个平面内,
∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,
∴BC⊥平面PAC,
∴△PBC是直角三角形.
从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是:4.
故选:A.
练习册系列答案
相关题目