题目内容
【题目】在数列中, ,且 ().
(1)写出此数列的前5项; (2)归纳猜想的通项公式,并加以证明.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)利用数列{an}前n项的算术平均数等于第n项的2n-1倍,推出关系式,通过n=2,3,4,5求出此数列的前5项;
(2)通过(1)归纳出数列{an}的通项公式,然后用数学归纳法证明.第一步验证n=1成立;第二步,假设n=k猜想成立,然后证明n=k+1时猜想也成立.
试题解析:
(1)由已知分别取,得, ,
, ,
所以数列的前5项是: , .
(2)由(1)中的分析可以猜想.
下面用数学归纳法证明:①当时,公式显然成立.
②假设当时成立,即,那么由已知,
得,即,
所以, 即,
又由归纳假设,得,
所以,即当时,公式也成立.
由①和②知,对一切,都有成立.
【题目】随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:
支付宝用户 | 非支付宝用户 | 合计 | |
中老年 | 90 | ||
青年 | 120 | ||
合计 | 300 |
(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?
(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用表示所选3人中使用支付宝用户的人数,求的分布列与数学期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
【题目】世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 | |||||
频数 |
(Ⅰ)求所得样本的中位数(精确到百元);
(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该所大学共有学生人,试估计有多少位同学旅游费用支出在元以上;
(Ⅲ)已知样本数据中旅游费用支出在范围内的名学生中有名女生, 名男生,现想选其中名学生回访,记选出的男生人数为,求的分布列与数学期望.
附:若,则,
, .