题目内容
【题目】已知复数z满足|z|= ,z2的虚部为2.
(1)求z;
(2)设z,z2 , z﹣z2在复平面对应的点分别为A,B,C,求△ABC的面积.
【答案】
(1)解:设Z=x+yi(x,y∈R)
由题意得Z2=(x﹣y)2=x2﹣y2+2xyi
∴
故(x﹣y)2=0,∴x=y将其代入(2)得2x2=2∴x=±1
故 或
故Z=1+i或Z=﹣1﹣i;
(2)解:当Z=1+i时,Z2=2i,Z﹣Z2=1﹣i
所以A(1,1),B(0,2),C(1,﹣1)
∴
当Z=﹣1﹣i时,Z2=2i,Z﹣Z2=﹣1﹣3i,A(﹣1,﹣1),B(0,2),C(﹣1,﹣3)
S△ABC= ×1×2=1.
【解析】(1)设出复数的代数形式的式子,根据所给的模长和z2的虚部为2.得到关于复数实部和虚部的方程组,解方程组,得到要求的复数.(2)写出所给的三个复数的表示式,根据代数形式的表示式写出复数对应的点的坐标,即得到三角形的三个顶点的坐标,求出三角形的面积,注意三个点的坐标有两种结果,不要漏解.
【考点精析】认真审题,首先需要了解复数的定义(形如的数叫做复数,和分别叫它的实部和虚部),还要掌握复数的模(绝对值)(复平面内复数所对应的点到原点的距离,是非负数,因而两复数的模可以比较大小;复数模的性质:(1)(2)(3)若为虚数,则)的相关知识才是答题的关键.
【题目】某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:
近视度数 | 0﹣100 | 100﹣200 | 200﹣300 | 300﹣400 | 400以上 |
学生频数 | 30 | 40 | 20 | 10 | 0 |
将近视程度由低到高分为4个等级:当近视度数在0﹣100时,称为不近视,记作0;当近视度数在100﹣200时,称为轻度近视,记作1;当近视度数在200﹣400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(1)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(2)设a=0.0024,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(3)把频率近似地看成概率,用随机变量X,Y分别表示高二、高三年级学生的近视程度,若EX=EY,求b.