题目内容
【题目】已知全集U=R,集合A={x|﹣1<x<1},B={x|2≤4x≤8},C={x|a﹣4<x≤2a﹣7}.
(1)求(UA)∩B;
(2)若A∩C=C,求实数a的取值范围.
【答案】
(1)解:∵全集U=R,集合A={x|﹣1<x<1},
∴UA={x|x≤﹣1或x≥1},
∵B={x|2≤4x≤8}={x|1≤2x≤3}={x| ≤x≤ },
∴(UA)∩B={x|1≤x≤ };
(2)解:由A∩C=C得,CA,且C={x|a﹣4<x≤2a﹣7},
①当C=时,a﹣4≥2a﹣7,解得a≤3;
②当C≠时,则 ,解得3<a<4,
综上可得,实数a的取值范围是(﹣∞,4).
【解析】(1)由题意和补集的运算求出UA,由指数函数的性质求出B,由交集的运算求出(UA)∩B;(2)由A∩C=C得CA,对C分类讨论,由子集的定义分别列出不等式,求出实数a的取值范围.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立,以及对交、并、补集的混合运算的理解,了解求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
练习册系列答案
相关题目