题目内容

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0,n∈N*
(1)求数列{an}的通项;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
分析:(1)首先判断数列{an}为等差数列,由a1=8,a4=2求出公差,代入通项公式即得.
(2)首先判断哪几项为非负数,哪些是负数,从而得出当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)求出结果;当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an当,再利用等差数列的前n项和公式求出答案.
解答:解:(1)由题意,an+2-an+1=an+1-an
∴数列{an}是以8为首项,-2为公差的等差数列
∴an=10-2n,n∈N
(2)(2)∵an=10-2n,令an=0,得n=5.
当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.
∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an
当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn
Sn=
-n2+9nn≤5
n2-9n+40n≥6
,n∈N
点评:考查了等差数列的通项公式和前n项和公式,求出公差,用代入法直接可求;(2)问的关键是断哪几项为非负数,哪些是负数,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网