题目内容
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
1 |
5 |
6 |
5n+1 |
lim |
n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:2(a1+a2+…+an)=a1+[(a1+a2)+(a2+a3)+(a3+a4)+…+(an-1+an)]+an=
+[
+
+…+
]+an.由此能够导出
(a1+a2+…+an)的值.
1 |
5 |
6 |
52 |
6 |
53 |
6 |
5n |
lim |
n→∞ |
解答:解:2(a1+a2+…+an)
=a1+[(a1+a2)+(a2+a3)+(a3+a4)+…+(an-1+an)]+an
=
+[
+
+…+
]+an.
∴原式=
[
+
+
an]=
(
+
+
an).
∵an+an+1=
,∴
an+
an+1=0.∴
an=0.
故选C.
=a1+[(a1+a2)+(a2+a3)+(a3+a4)+…+(an-1+an)]+an
=
1 |
5 |
6 |
52 |
6 |
53 |
6 |
5n |
∴原式=
1 |
2 |
1 |
5 |
| ||
1-
|
lim |
n→∞ |
1 |
2 |
1 |
5 |
3 |
10 |
lim |
n→∞ |
∵an+an+1=
6 |
5n+1 |
lim |
n→∞ |
lim |
n→∞ |
lim |
n→∞ |
故选C.
点评:本题考查数列的极限和求法,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目