题目内容
【题目】设函数,其中.函数的图像在点处的切线与函数的图像在点处的切线互相垂直.
(Ⅰ)求的值;
(Ⅱ)若在上恒成立,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)
【解析】
(Ⅰ)求f(x)的导函数,代入g(x),对函数g(x)求导,结合函数f(x)的图象在点A处的切线与g(x)的图象在点B处的切线互相垂直列式求t值;(Ⅱ)设函数F(x)=kg(x)﹣2f(x)=2kex(x+1)﹣2x2﹣8x﹣4,(x≥﹣2),求其导函数,分类求得函数最小值,可得k的取值范围.
(Ⅰ)由得,.
于是,所以.
函数的图象在点处的切线与函数的图象在点处的切线互相垂直,所以,即
(Ⅱ),.
设函数=(),
则=.
由题设可知,即.令 得 , .
(1)若,则,此时,,,
,即在单调递减,在单调递增,所以在取
最小值.
而
当时,,即恒成立.
②若则,此时
在单调递增,而 ,
当时,,即恒成立.
③若则,此时 .
当时, 不能恒成立.
综上所述,的取值范围是
练习册系列答案
相关题目
【题目】对某校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
问:(1)由题意列出学生语文成绩与外语成绩关系的列联表:
语文优秀 | 语文不优秀 | 总计 | |
外语优秀 | |||
外语不优秀 | |||
总计 |
(2)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?(保留三位小数)
(附:)
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |