题目内容
(本小题满分12分)
已知函数f1(x)=,f2(x)=(其中m ∈R且m≠0).
(Ⅰ)讨论函数f1(x)的单调性;
(Ⅱ)若m<-2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(Ⅲ)设函数g(x)=当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.
已知函数f1(x)=,f2(x)=(其中m ∈R且m≠0).
(Ⅰ)讨论函数f1(x)的单调性;
(Ⅱ)若m<-2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(Ⅲ)设函数g(x)=当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.
略
练习册系列答案
相关题目