题目内容
已知抛物线,点,过的直线交抛物线于两点.
(1)若线段中点的横坐标等于,求直线的斜率;
(2)设点关于轴的对称点为,求证:直线过定点.
(1)若线段中点的横坐标等于,求直线的斜率;
(2)设点关于轴的对称点为,求证:直线过定点.
(1);(2)
试题分析:(1)因为点M在抛物线外面,所以过M与抛物线相交的直线斜率存在,用点斜式假设直线方程并联立抛物线方程,消去y,即可得一个关于x的一元二次方程,由韦达定理及已知中点的横坐标,即可求出斜率的值.
(2)由点A,B的横坐标满足(1)式中的一元二次方程,由韦达定理可得根与系数的等式,再写出直线的方程,利用点差法将点A,B的坐标带入抛物线方程.即可求出直线过定点,要做点是否存在的判定.
试题解析:(1)设过点的直线方程为,
由 得
因为 ,且,
所以,.
设,,则,.
因为线段中点的横坐标等于,所以,
解得,符合题意.
(2)依题意,直线,
又 ,,
所以
因为 , 且同号,所以,
所以 ,
所以,直线恒过定点.
练习册系列答案
相关题目