题目内容

(本小题满分14分)
等差数列{an}不是常数列,=10,且是等比数列{}的第1,3,5项,且.
(1)求数列{}的第20项,(2)求数列{}的通项公式.
(1)a20=47.5;(2)q=,bn=b1qn-1=10

试题分析: (1)因为数列{an}的公差为d,则a5=10,a7=10+2d,a10=10+5d
因为等比数列{bn}的第1、3、5项也成等比,所以a72=a5a10得到其基本量。
(2)由(1)知{bn}为正项数列,所以得到公比,进而得到数列的通项公式。
解:(1)设数列{an}的公差为d,则a5=10,a7=10+2d,a10=10+5d
因为等比数列{bn}的第1、3、5项也成等比,
所以a72=a5a10   即:(10+2d)2=10(10+5d)
解得d=2.5  ,d=0(舍去)…………………………………………………5分
所以:a20=47.5………………………………………………………………7分
由(1)知{bn}为正项数列,所以q2= = =
所以q=………………….9分
bn=b1qn-1=10…………………………………………………………………   12分
点评:解决该试题的关键是设出首项和公差,得到数列的关系式,进而得到其通项公式,并根据等比数列的项的关系,得到其通项公式。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网