题目内容
已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322378291041.png)
.
(1)当
时,求函数
的单调区间;
(2)若
时,函数
在闭区间
上的最大值为
,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322378291041.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237845522.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237860386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237860573.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237876398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237860573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237907461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237923525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237938283.png)
(1)单调增区间分别为
,
,单调减区间为
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237954487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237954539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237970443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237985460.png)
试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值以及不等式的基础知识,考查分类讨论思想,考查综合运用数学知识和方法分析问题解决问题的能力和计算能力.第一问,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237860386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238032535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237938283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237938283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237907461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237923525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237938283.png)
试题解析:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322381101284.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237860386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238126983.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238141340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238157407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238172555.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238188446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238188547.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238204463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237954487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237954539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238204463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237970443.png)
(2)(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238313337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238328807.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238204463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238375454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237923525.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238438437.png)
x | 0 | (0,a) | a | (a,1) | 1 | (1,1+a) | a+1 |
f/(x) | | + | 0 | - | 0 | + | |
f(x) | | 增 | 极大值f(a) | 减 | | 增 | |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238204463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238375454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238484468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237923525.png)
所以只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322385161669.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238531486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238547544.png)
(Ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238562370.png)
x | 0 | (0,1) | 1 | (1 ,a) | a | (a,1+a) | a+1 |
f/(x) | | + | 0 | - | 0 | + | |
f(x) | | 增 | 极大值f(1) | 减 | | 增 | |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238204463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238375454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238625421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237923525.png)
所以只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240322386561962.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238672415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238687480.png)
由(Ⅰ)(Ⅱ)(Ⅲ)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032238703557.png)
所以满足条件的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237938283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032237985460.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目