题目内容

(2013•宁波二模)三个顶点均在椭圆上的三角形称为椭圆的内接三角形.已知点A是椭圆的一个短轴端点,如果以A为直角顶点的椭圆内接等腰直角三角形有且仅有三个,则椭圆的离心率的取值范围是(  )
分析:设椭圆的方程为
x2
a2
+
y2
b2
=1
,直线AB方程为y=kx+b(k>0),两方程联解得到B的横坐标为-
2ka2b
a2k2+b2
,从而得|AB|=
1+k2
2ka2b
a2k2+b2
,同理得到|AC|=
1+
1
k2
2ka2b
b2k2+a2
.根据|AB|=|AC|建立关于k、a、b的方程,化简整理得到(k-1)[b2k2+(b2-a2)k+b2]=0,结合题意得该方程有三个不相等的实数根,根据一元二次方程根与系数的关系和根的判别式建立关于a、b的不等式,解之即得c2>2b2,由此结合a2=b2+c2即可解出该椭圆的离心率的取值范围.
解答:解:设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
根据BA、AC互相垂直,设直线AB方程为y=kx+b(k>0),AC方程为y=-
1
k
x+b
x2
a2
+
y2
b2
=1
y=kx+b
,消去y并化简得(a2k2+b2)x2+2ka2bx=0
解之得x1=0,x2=-
2ka2b
a2k2+b2
,可得B的横坐标为-
2ka2b
a2k2+b2

∴|AB|=
1+k2
|x1-x2|=
1+k2
2ka2b
a2k2+b2

同理可得,|AC|=
1+
1
k2
2ka2b
b2k2+a2

∵△ABC是以A为直角顶点的椭圆内接等腰直角三角形,
∴|AB|=|AC|即
1+k2
2ka2b
a2k2+b2
=
1+
1
k2
2ka2b
b2k2+a2

化简整理,得b2k3-a2k2+a2k-b2=0,分解因式得:(k-1)[b2k2+(b2-a2)k+b2]=0…(*)
方程(*)的一个解是k1=1,另两个解是方程b2k2+(b2-a2)k+b2=0的根
∵k1=1不是方程b2k2+(b2-a2)k+b2=0的根,
∴当方程b2k2+(b2-a2)k+b2=0有两个不相等的正数根时,方程(*)有3个不相等的实数根
相应地,以A为直角顶点的椭圆内接等腰直角三角形也有三个.
因此,△=(b2-a22-2b4>0且
k2+k3=
a2-b2
b2
>0
k1k2=
b2
b2
>0
,化简得c2>2b2
即3c2>2a2,两边都除以3a2
c2
a2
2
3

∴离心率e满足e2
2
3
,解之得e>
6
3
,结合椭圆的离心率e<1,得
6
3
<e<1
故选:D
点评:本题给出以椭圆上顶点为直角顶点的内接等腰直角三角形存在3个,求椭圆的离心率取值范围,着重考查了椭圆的标准方程、简单几何性质和直线与椭圆位置关系等知识点,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网