题目内容
(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
(Ⅰ) (Ⅱ)网 (Ⅲ)略
解析:
:(1)该连锁分店一年的利润L(万元)与售价x的函数关系式为
L(x)= (x-4-a)(10-x)2,x∈[8,9]. ………4分
(2) =(10-x)(18+2a-3x),…6分
令,得x =6+a或x=10(舍去). ∵1≤a≤3,∴≤6+a≤8.…10分
所以L(x)在x∈[8,9]上单调递减,故Lmax=L(8)=(8-4-a)(10-8)2=16-4a. 即M(a) =16-4a.…15分
答:当每件商品的售价为8元时,该连锁分店一年的利润L最大,最大值为16-4a万元.…16分
练习册系列答案
相关题目