题目内容

16.如图,在矩形ABCD中,AB=$\sqrt{3}$,BC=1,E为线段CD上一动点,现将△AED沿AE折起,使平面AED⊥平面ABC,当E从D运动到C,则D在平面ABC上的射影K所形成轨迹的长度为(  )
 
A.$\frac{\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{π}{2}$D.$\frac{π}{3}$

分析 根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K,则∠D'KA=90°,得到K点的轨迹是以AD'为直径的圆上一段弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.

解答 解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K为垂足是D在平面ABC上的射影,由翻折的特征知,连接D'K,
则∠D'KA=90°,故K点的轨迹是以AD'为直径的圆上一段弧,根据长方形知圆半径是$\frac{1}{2}$,
如图当E与C重合时,AK=$\frac{1}{2}$,
取O为AD′的中点,得到△OAK是正三角形.
故∠K0A=$\frac{π}{3}$,∴∠K0D'=$\frac{2π}{3}$,
其所对的弧长为$\frac{1}{2}×\frac{2π}{3}=\frac{π}{3}$;
故选:D.

点评 本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网