题目内容

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且btanB=
(1)求角B的值;
(2)若△ABC的面积为 ,a+c=8,求边b.

【答案】
(1)解:∵△ABC的内角A,B,C的对边分别为a,b,c,且btanB=

∴由正弦定理得:

sinBtanB= (sinAcosC+sinCcosA)= sin(A+C)= sinB,

∵B∈(0,π),∴sinB≠0,∴tanB=

∵B∈(0,π),∴B=


(2)解:∵△ABC的面积为 ,∴ =

∵a+c=8,

∴在△ABC中,由余弦定理得:

b2=a2+c2﹣2accosB=(a+c)2﹣3ac=36,

∴b=6


【解析】(1)由正弦定理得:sinBtanB= (sinAcosC+sinCcosA)= sin(A+C)= sinB,求出tanB= ,由此求出B= .(2)由△ABC的面积为 ,得到 ,再由a+c=8,利用余弦定理能求出b的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网