题目内容

3.一个棱锥的三视图如图所示,则该棱锥的全面积是(  )
A.8B.4$\sqrt{3}$C.4+2$\sqrt{3}$D.4+2$\sqrt{6}$

分析 由三视图可知:原几何体是一个如图所示的三棱锥,点O为边AC的中点,且PO⊥底面ABC,OB⊥AC,PO=AC=OB=2.据此可计算出该棱锥的全面积.

解答 解:由三视图可知:原几何体是一个如图所示的三棱锥,点O为边AC的中点,且PO⊥底面ABC,OB⊥AC,PO=AC=OB=2.
可求得S△PAC=$\frac{1}{2}$×2×2=2,S△ABC=$\frac{1}{2}$×2×2=2.
∵PO⊥AC,
∴在Rt△POA中,由勾股定理得PA=$\sqrt{5}$.
同理AB=BC=PC=PA=$\sqrt{5}$.
由PO⊥底面ABC,得PO⊥OB,
在Rt△POB中,由勾股定理得PB=2$\sqrt{2}$.
由于△PAB是一个腰长为$\sqrt{5}$,底边长为2$\sqrt{2}$的等腰三角形,可求得底边上的高h=$\sqrt{3}$.
∴S△PAB=$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$.
同理S△PBC=$\sqrt{6}$.
故该棱锥的全面积=2+2+$\sqrt{6}$+$\sqrt{6}$=4+2$\sqrt{6}$.
故选:D

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网