题目内容
【题目】有下列命题中,正确的是( )
A.“若 ,则 ”的逆命题
B.命题“?x∈R, ”的否定
C.“面积相等的三角形全等”的否命题
D.“若A∩B=B,则A?B”的逆否命题
【答案】C
【解析】解:对于A,向量模相等,可以是相反向量,故不正确;
对于B,命题“x∈R, ”的否定是“x∈R,x+ ≥2”,不正确;
对于C,因为三角形全等,面积相等是真命题,结合逆命题与否命题是等价命题,所以“面积相等的三角形全等”的否命题是真命题,正确;
对于D,A∩B=B,则BA,故D不正确.
故选:C.
【考点精析】本题主要考查了四种命题的真假关系的相关知识点,需要掌握一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)①、原命题为真,它的逆命题不一定为真;②、原命题为真,它的否命题不一定为真;③、原命题为真,它的逆否命题一定为真才能正确解答此题.
【题目】“特罗卡”是靶向治疗肺癌的一种药物,为了研究其疗效,医疗专家借助一些肺癌患者,进行人体试验,得到如右丢失一些数据的2×2列联表:
疫苗效果试验列
感染 | 未感染 | 总计 | |
没服用 | 20 | 30 | 50 |
服用 | X | y | 50 |
总计 | M | N | 100 |
设从没服用该药物的肺癌患者中任选两人,未感染人数为ξ;从服用该药物的肺癌患者中任选两人,未感染人数为η,研究人员曾计算过得出:P(ξ=0)= P(η=0).
(1)求出列联表中数据x,y,M,N的值.
(2)能否有97.5%的把握认为该药物对治疗肺癌有疗效吗?
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
注:K2= .
【题目】设连续掷两次骰子得到的点数分别为m、n,令平面向量 , .
(1)求使得事件“ ”发生的概率;
(2)求使得事件“ ”发生的概率;
(3)使得事件“直线 与圆(x﹣3)2+y2=1相交”发生的概率.
【题目】如表中给出了2011年~2015年某市快递业务总量的统计数据(单位:百万件)
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
快递业务总量 | 34 | 55 | 71 | 85 | 105 |
(1)在图中画出所给数据的折线图;
(2)建立一个该市快递量y关于年份代码x的线性回归模型;
(3)利用(2)所得的模型,预测该市2016年的快递业务总量.
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
斜率: ,纵截距: .
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)根据上表数据,请在如图坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程 ;(保留2位小数)
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
参考公式: = , = ﹣ .