题目内容

12.在△ABC中,a、b、c分别是A、B、C的对边,且a2+c2-b2+ac=0
(1)求角B的大小;
(2)若△ABC中sinC=2sinA,且b=$\sqrt{14}$,求a的值.

分析 (1)由余弦定理结合已知等式可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=-$\frac{1}{2}$,结合B的范围即可得解.
(2)由正弦定理可求:c=2a,把已知边角关系代入余弦定理即可得解.

解答 本题满分为12分
解:(1)∵a2+c2-b2+ac=0,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{-ac}{2ac}$=-$\frac{1}{2}$,
∴结合B的范围:0<B<π,可解得:B=$\frac{2π}{3}$…(6分)
(2)∵sinC=2sinA,
∴由正弦定理可得:c=2a,
∴由余弦定理可得:b2=14=a2+c2-2accosB=a2+4a2+2a2=7a2
∴可解得:a=$\sqrt{2}$…(12分)

点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网