题目内容
(本小题满分14分)
已知函数
.
(Ⅰ)若函数
在定义域内为增函数,求实数
的取值范围;
(Ⅱ)当
时,试判断
与
的大小关系,并证明你的结论;
(Ⅲ) 当
且
时,证明:
.
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953244993.png)
(Ⅰ)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953259447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953290313.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953353508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953415622.png)
(Ⅲ) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953446441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953353508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953493919.png)
(Ⅰ)
的取值范围为
.(Ⅱ)当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
.
(Ⅲ)见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953290313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953696474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953899523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953946657.png)
(Ⅲ)见解析.
(I)求函数
.的导数,注意定义域,令导函数大于或等于0,分离参数
,令一端配方求出最值即得
的范围;(II)由(Ⅰ)可知:
时,
,
(当
时,等号成立),令
,则
取
两边分别相加整理即得结论;(III)由(2)知,当
,令
求导可得最小值
,所以
时,
(当且仅当
时,等号成立),令
,则
,所以
,
,因而可得
,所以
, 所以
,然后不等式累加证明即可.
(Ⅰ)
,函数
的定义域为
.
.
依题意,
在
恒成立,
在
恒成立.
,
,∴
的取值范围为
. ……………………………………………………… (4分)
(Ⅱ)当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
.
证明:当
时,欲证![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
,只需证
.
由(Ⅰ)可知:取
,则
,
而
,
(当
时,等号成立).
用
代换
,得
,即
,
∴
.
在上式中分别取
,并将同向不等式相加,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955849911.png)
.
∴当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
. ………………………………………… (9分)
(Ⅲ)由(Ⅱ)可知
(
时,等号成立).
而当
时:
,∴当
时,
.
设
,则
,
∴
在
上递减,在
上递增,
∴
,即
在
时恒成立.
故当
时,
(当且仅当
时,等号成立). …… ①
用
代换
得:
(当且仅当
时,等号成立). …… ②
当
时,由①得
,
.
当
时,由②得
,用
代换
,得
.
∴当
时,
,即
.
在上式中分别取
,并将同向不等式相加,得
.
故当
且
时,
. …………………………………………………(14分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953244993.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953290313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953290313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954133369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954148682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954180566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954195323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954226994.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229542581095.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954273571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954304752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954320900.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954336499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954367641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954382480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954195323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954414510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954445599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954460615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954476624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954523764.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954538799.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954554822.png)
(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954585429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954601799.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953696474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954632980.png)
依题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954648779.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954679628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954804802.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954679628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229550531214.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955069420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953290313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953696474.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953899523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953946657.png)
证明:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953899523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953946657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229555521370.png)
由(Ⅰ)可知:取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954133369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955584721.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955615545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954180566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954195323.png)
用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955708557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955740266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229557711116.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229557861208.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229555521370.png)
在上式中分别取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955833659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955849911.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953415622.png)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953899523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953368866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953946657.png)
(Ⅲ)由(Ⅱ)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956114527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954195323.png)
而当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956161403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956176473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956161403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956286483.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954320900.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956504757.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956691442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956707428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956738458.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956769686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956910470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222956941582.png)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954367641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954382480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954195323.png)
用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222955740266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957315321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957362590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957456367.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957471664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954445599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954476624.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957471664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954460615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957580404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957596312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954523764.png)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957471664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954538799.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222954554822.png)
在上式中分别取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222957690677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229577211006.png)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953446441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953899523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222953493919.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目