题目内容
(本小题满分14分)
已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)判断函数f(x)在上的单调性;(2)是否存在实数,使曲线y=g(x)在点x=x0处的切线与y轴垂直? 若存在,求出x0的值;若不存在,请说明理由.(3)若实数m,n满足m>0, n>0,求证:nnem≥mnen.
【答案】
解(1)∵,,∴. ……1分
①若,则,在上单调递增; ……2分
②若,当时,,函数在区间上单调递减,
当时,,函数在区间上单调递增, ……4分
③若,则,函数在区间上单调递减. ……5分
(2)解:∵,,
, ……6分
由(1)易知,当时,在上的最小值:,即时,. ……8分
又,∴. ……9分
曲线在点处的切线与轴垂直等价于方程有实数解.
而,即方程无实数解.故不存在. ……10分
(3)证明:
,由(2)知,令得.……14分
【解析】略
练习册系列答案
相关题目