题目内容
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换:可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点、经变换公式变换后得到的点和的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
:(,)下的不动点的存在情况和个数.
定义变换:可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点、经变换公式变换后得到的点和的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
:(,)下的不动点的存在情况和个数.
(1)(2)(3)两个
(1)设椭圆的标准方程为(),由椭圆定义知焦距,即…①. 又由条件得…②,故由①、②可解得,. 即椭圆的标准方程为. 且椭圆两个焦点的坐标分别为和. 对于变换:,当时,可得 设和分别是由和的坐标由变换公式变换得到.于是,,即的坐标为; 又即的坐标为. (2)设是椭圆在变换下的不动点,则当时, 有,由点,即,得: ,因而椭圆的不动点共有两个,分别为和. (3) 设是双曲线在变换下的不动点,则由 因为,,故. 不妨设双曲线方程为(),由代入得 则有, 因为,故当时,方程无解; 当时,要使不动点存在,则需, 因为,故当时,双曲线在变换下一定有2个不动点,否则不存在不动点. 进一步分类可知: (i)当,时,即双曲线的焦点在轴上时, ; 此时双曲线在变换下一定有2个不动点; (ii)当,时,即双曲线的焦点在轴上时, . |
练习册系列答案
相关题目