题目内容
【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;
(2)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
【答案】(1)a=0.006;76; (2)
【解析】
(1)根据频率分布直方图,由概率之和为1求解a,设中位数为m,根据中位数平分直方图的面积求解.
(2)由频率分布直方图,可知在[40,50)内的人数:0.004×10×50=2,在[50,60)内的人数:0.006×10×50=3.设在[40,50)内的2人分别为a1,a2,在[50,60)内的3人分别为B1,B2,B3,列举出[40,60)的问卷者中随机抽取2人,基本事件的种数,再找出其中2人评分都在[50,60)内的基本事件的种数,利用古典概型的概率公式求解.
(1)由频率分布直方图,可得(0.004+a+0.0156+0.0232+0.0232+0.028)×10=1,
解得a=0.006.
由频率分布直方图,可设中位数为m,则有(0.004+0.006+0.0232)×10+(m﹣70)×0.028=0.5,解得中位数m=76.
(2)由频率分布直方图,可知在[40,50)内的人数:0.004×10×50=2,
在[50,60)内的人数:0.006×10×50=3.
设在[40,50)内的2人分别为a1,a2,在[50,60)内的3人分别为B1,B2,B3,
则从[40,60)的问卷者中随机抽取2人,基本事件有10种,分别为:
(a1,a2),(a1,B1),(a1,B2),(a1,B3),(a2,B1),
(a2,B2),(a2,B3),(B1,B2),(B1,B3),(B2,B3),
其中2人评分都在[50,60)内的基本事件有(B1,B2),(B1,B3),(B2,B3)共3种,
故此2人评分都在[50,60)的概率为.