题目内容
【题目】如图,在矩形ABCD中,AB=2,AD=1,M为AB的中点,将△ADM沿DM翻折.在翻折过程中,当二面角A—BC—D的平面角最大时,其正切值为( )
A. B. C. D.
【答案】B
【解析】
取的中点,的中点为,则折叠后有平面,在四棱锥中过点作的垂线,垂足为,再过作的垂线,垂足为,连接,则为二面角的平面角,可用的三角函数表示的正切值,利用导数可求其最大值.
取的中点,的中点为,因为为等腰三角形,
故,同理, ,所以有平面.
因为平面,故平面平面.
在四棱锥中过点作的垂线,垂足为,再过作的垂线,垂足为,连接.
因为,平面,平面平面,故平面.
因为平面,故,
又,,故平面,
又平面,故,所以为二面角的平面角.
设,则,,
,
所以,其中.
令,则,令且,
当时,;当时,;
所以,故,故选B.
练习册系列答案
相关题目
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,在高三年级中随机选取名学生进行跟踪问卷,其中每周线上学习数学时间不少于小时的有人,在这人中分数不足分的有人;在每周线上学习数学时间不足于小时的人中,在检测考试中数学平均成绩不足分的占.
(1)请完成列联表;并判断是否有的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
分数不少于分 | 分数不足分 | 合计 | |
线上学习时间不少于小时 | |||
线上学习时间不足小时 | |||
合计 |
(2)在上述样本中从分数不足于分的学生中,按照分层抽样的方法,抽到线上学习时间不少于小时和线上学习时间不足小时的学生共名,若在这名学生中随机抽取人,求这人每周线上学习时间都不足小时的概率.(临界值表仅供参考)
(参考公式,其中)