题目内容
16.下面的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为13,乙组数据的平均数是16.8.
(Ⅰ)求x,y的值;
(Ⅱ)从成绩不低于10分且不超过20分的学生中任意抽取3名,求恰有2名学生在乙组的概率.
分析 (Ⅰ)根据中位数平均数的定义求出即可;
(Ⅱ)分别计算成绩不低于10分且不超过20分的学生中任意抽取3名的取法种数,和恰有2名学生在乙组取法种数,代入古典概型概率公式,可得答案
解答 解:(Ⅰ)甲组五名学生的成绩为9,12,10+x,24,27.
乙组五名学生的成绩为9,15,10+y,18,24.
因为甲组数据的中位数为13,乙组数据的平均数是16.8
所以10+x=13,9+15+10+y+18+24=16.8×5
所以x=3,y=8;
(Ⅱ)成绩不低于(10分)且不超过(20分)的学生中共有5名,其中甲组有2名,用A,B表示,乙组有3名,用a,b,c表示,
从中任意抽取3名共有10种不同的抽法,分别为(A,B,a),(A,B,b),(A,B,c),(A,a,b),(A,a,c),(A,b,c),(B,a,b),(B,a,c),(B,b,c),(a,b,c)
恰有2名学生在乙组共有6种不同抽法,分别为(A,a,b),(A,a,c),(A,b,c),(B,a,b),(B,a,c),(B,b,c)
所以概率为P=$\frac{6}{10}$=$\frac{3}{5}$.
点评 本题考查了古典概型概率计算公式,茎叶图,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键
练习册系列答案
相关题目
1.“光盘行动”已经发起两年,为了调查人们的节约意识,某班几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
(1)求a,b的值,并估计本社区[25,55]岁的人群中“光盘族”人数所占的比例;
(2)从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)和[40,45)两个年龄段的概率.
组数 | 分组 | 频数 | 频率 | 关盘组占本组的比例 |
第一组 | [25,30) | 50 | 0.05 | 30% |
第二组 | [30,35) | 100 | 0.1 | 30% |
第三组 | [35,40) | 150 | 0.15 | 40% |
第四组 | [40,45) | 200 | 0.2 | 50% |
第五组 | [45,50) | a | b | 65% |
第六组 | [50,55) | 200 | 0.2 | 60% |
(2)从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)和[40,45)两个年龄段的概率.
6.某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如图表所示.
(1)分别求出n,a,b,c的值;
(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60]的人中至少有1人被授予“环保之星”的概率.
年龄 分组 | 抽取份数 | 答对全卷 的人数 | 答对全卷的人数 占本组的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | n | 27 | 0.9 |
[40,50) | 10 | 4 | b |
[50,60] | 20 | a | 0.1 |
(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60]的人中至少有1人被授予“环保之星”的概率.