题目内容

【题目】函数f(x)= 是定义在区间(﹣1,1)上的奇函数,且f(2)=
(1)确定函数f(x)的解析式;
(2)用定义法证明f(x)在区间(﹣1,1)上是增函数;
(3)解不等式f(t﹣1)+f(t)<0.

【答案】
(1)解:∵函数f(x)= 是定义在区间(﹣1,1)上的奇函数,

∴f(﹣x)=﹣f(x),

=﹣

∴b=﹣b,

∴b=0

又∵f(2)= =

∴a=1,

∴函数f(x)=


(2)解:证法一:设任意﹣1<x1<x2<1,

∴x1﹣x2<0,1﹣x1x2>0,

∴f(x1)﹣f(x2)=

=

∴f(x1)<f(x2

∴f(x)在区间(﹣1,1)上是增函数

证法二:∵函数f(x)=

∴f′(x)=

当x∈(﹣1,1)时,

f′(x)>0恒成立,

∴f(x)在区间(﹣1,1)上是增函数


(3)解:由题意知f(t﹣1)+f(t)<0

∴f(t﹣1)<﹣f(t)

∴f(t﹣1)<f(﹣t)

∴﹣1<t﹣1<﹣t<1

∴0<t<


【解析】(1)由函数f(x)= 是定义在区间(﹣1,1)上的奇函数,且f(2)= ,求出a,b的值,可得函数f(x)的解析式;(2)证法一:设任意﹣1<x1<x2<1,求出f(x1)﹣f(x2),并判断符号,进而根据函数单调性的定义得到f(x)在区间(﹣1,1)上是增函数;证法二:求导,并分析出当x∈(﹣1,1)时,f′(x)>0恒成立,进而得到f(x)在区间(﹣1,1)上是增函数(3)不等式f(t﹣1)+f(t)<0可化为:﹣1<t﹣1<﹣t<1,解得答案.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对利用导数研究函数的单调性的理解,了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网