题目内容

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1 , 连接AP交棱CC1于点D. (Ⅰ)求证:PB1∥平面BDA1
(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值.

【答案】解:以A1为原点,A1B,A1C,A1A分别为x轴,y轴,z轴正方向,建立坐标系, 则A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),P(0,2,0)
(Ⅰ)在△PAA1中,C1D= AA1,则D(0,1,
=(1,0,1), =(0,1, ), =(﹣1,2,0)
设平面BDA1的一个法向量为 =(a,b,c)

令c=﹣1,则 =(1, ,﹣1)
=1×(﹣1)+ ×2+(﹣1)×0=0
∴PB1∥平面BDA1
(Ⅱ)由(I)知平面BDA1的一个法向量 =(1, ,﹣1)
=(1,0,0)为平面AA1D的一个法向量
∴cos< >= = =
故二面角A﹣A1D﹣B的平面角的余弦值为
【解析】以A1为原点,A1B,A1C,A1A分别为x轴,y轴,z轴正方向,建立坐标系,则我们易求出各个点的坐标,进而求出各线的方向向量及各面的法向量.(I)要证明PB1∥平面BDA1 , 我们可以先求出直线PB1的向量,及平面BDA1的法向量,然后判断证明这两个向量互相垂直(II)由图象可得二面角A﹣A1D﹣B是一个锐二面角,我们求出平面AA1D与平面A1DB的法向量,然后求出两个法向量夹角的余弦值,得到结论.
【考点精析】通过灵活运用直线与平面平行的判定和直线与平面平行的性质,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网