题目内容
【题目】已知函数f(x)对任意的实数满足:f(x+3)=﹣ ,且当﹣3≤x<﹣1时,f(x)=﹣(x+2)2 , 当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2016)= .
【答案】336
【解析】解:由题意知,f(x+3)=﹣ , 则f(x+6)=﹣ =f(x),
∴f(x+6)=f(x),且函数f(x)的周期6,
∵﹣3≤x<﹣1时,f(x)=﹣(x+2)2 ,
当﹣1≤x<3时,f(x)=x,
f(1)=1,f(2)=2,
f(3)=f(﹣3)=﹣(﹣3+2)2=﹣1,
f(4)=f(﹣2)=﹣(﹣2+2)2=0,
f(5)=f(﹣1)=﹣1,
f(6)=f(0)=0,
故f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,
而2016÷6=336
故f(1)+f(2)+f(3)+…+f(2 016)
=336×(f(1)+f(2)+f(3)+f(4)+f(5)+f(6))=336,
故答案为:336.
根据题意可得f(x+6)=f(x),求出函数的周期,由解析式和周期性依次求出f(1),f(2),f(3),f(4),f(5),f(6)的值,再求和,最后运用周期性求f(1)+f(2)+…+f(2013)+f(2016)的值即可.
练习册系列答案
相关题目