ÌâÄ¿ÄÚÈÝ

4£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬Ö±Ïßl£ºx=my-cÓëÍÖÔ²C½»ÓÚµãM£¬NÁ½µã£¬µ±m=-$\frac{{\sqrt{3}}}{3}$£¬MÊÇÍÖÔ²CµÄ¶¥µã£¬ÇÒ¡÷MF1F2µÄÖܳ¤Îª6£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôM£¬F2£¬NÔÚÖ±Ïßx=4ÉϵÄÉäÓ°·Ö±ðΪE£¬K£¬D£¬Á¬½ÓMD£¬µ±m±ä»¯Ê±£¬Ö¤Ã÷Ö±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬²¢Çó³ö¸Ã¶¨µãµÄ×ø±ê£»
£¨3£©ÉèÍÖÔ²CµÄ×󶥵ãΪA£¬Ö±ÏßAM£¬ANÓëÖ±Ïßx=4·Ö±ðÏཻÓÚµãP£¬Q£¬ÊÔÎÊ£ºµ±m±ä»¯Ê±£¬ÒÔÏ߶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öÕâ¸ö¶¨Öµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±m=-$\frac{{\sqrt{3}}}{3}$ʱ£¬¿ÉµÃÖ±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$£¬ÓÉÌâÒâÁйØÓÚa£¬cµÄ·½³Ì×飬½âµÃa¡¢cµÄÖµ£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²CµÄ·½³Ì¿ÉÇó£»
£¨2£©ÓÉ£¨1£©ÇóµÃc=1£¬ÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵµÃµ½M¡¢NµÄ×Ý×ø±êµÄºÍÓë»ý£¬
È»ºóÏÈÇóÖ±ÏßlÓëxÖᴹֱʱ£¬MDÓëNEµÄ½»µãΪG£¨$\frac{5}{2}£¬0$£©£¬ÔÙÀûÓÃбÂÊÏàµÈÖ¤µÃMG¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬NEÒ²¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬¼´¿É˵Ã÷Ö±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬¸Ã¶¨µãµÄ×ø±êΪG£¨$\frac{5}{2}£¬0$£©£»
£¨3£©Çó³öÖ±ÏßAMµÄ·½³Ì£¬µÃµ½PµÄ×ø±ê£¬Í¬Àí¿ÉµÃQ×ø±ê£¬ÉèH£¨x£¬y£©ÎªÒÔPQΪֱ¾¶µÄÔ²ÉÏÈÎÒâÒ»µã£¬¿ÉµÃ$\overrightarrow{PH}•\overrightarrow{QH}=0$£¬µÃµ½ÒÔPQΪֱ¾¶µÄÔ²µÄ·½³ÌÈ¡y=0£¬ÇóµÃx=1»òx=7£®ËµÃ÷ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý£¨1£¬0£©Ó루7£¬0£©£¬¼´µ±m±ä»¯Ê±£¬ÒÔÏ߶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊǶ¨Öµ6£®

½â´ð £¨1£©½â£ºµ±m=-$\frac{{\sqrt{3}}}{3}$ʱ£¬Ö±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{2a+2c=6}\\{\frac{c}{a}=cos\frac{¦Ð}{3}}\end{array}\right.$£¬½âµÃa=2£¬c=1£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ£¨1£©Öª£¬c=1£¬¡àÖ±ÏßlµÄ·½³ÌΪx=my+1£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{x=my-1}\end{array}\right.$£¬¿ÉµÃ£¨3m2+4£©y2+6my-9=0£®
¡à${y}_{1}+{y}_{2}=\frac{-6m}{3{m}^{2}+4}£¬{y}_{1}{y}_{2}=\frac{-9}{3{m}^{2}+4}$£®
µ±Ö±ÏßlÓëxÖᴹֱʱ£¬¿ÉµÃMDÓëNEµÄ½»µãΪF2KµÄÖеãG£¨$\frac{5}{2}£¬0$£©£¬
µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÏÂÃæÖ¤Ã÷MD¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
ÓÉÌâÒâ¿ÉÖªD£¨4£¬y2£©£¬
${k}_{GD}=\frac{{y}_{2}}{4-\frac{5}{2}}=\frac{2{y}_{2}}{3}$£¬${k}_{AG}=\frac{{y}_{1}}{{x}_{1}-\frac{5}{2}}=\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}$£¬
¡ß${k}_{AG}-{k}_{GD}=\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}-\frac{2{y}_{2}}{3}$=$\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}-\frac{2}{3}•\frac{-9}{£¨3{m}^{2}+4£©{y}_{1}}$
=$\frac{£¨3{m}^{2}+4£©{{y}_{1}}^{2}+6£¨m{y}_{1}-\frac{3}{2}£©}{£¨m{y}_{1}-\frac{3}{2}£©£¨3{m}^{2}+4£©{y}_{1}}$=$\frac{£¨3{m}^{2}+4£©{{y}_{1}}^{2}+6m{y}_{1}-9}{£¨m{y}_{1}-\frac{3}{2}£©£¨3{m}^{2}+4£©{y}_{1}}=0$£®
¡àkAG=kGD£¬¼´MG¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
ͬÀí¿ÉÖ¤NEÒ²¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
¡àÖ±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬¸Ã¶¨µãµÄ×ø±êΪG£¨$\frac{5}{2}£¬0$£©£»
£¨3£©ÓÉÌâÒâ¿ÉµÃÖ±ÏßAMµÄ·½³ÌΪ$y=\frac{{y}_{1}}{{x}_{1}+2}£¨x+2£©$£¬
Áîx=4£¬µÃPµã×ø±êΪ£¨$4£¬\frac{6{y}_{1}}{{x}_{1}+2}$£©£¬
ͬÀí¿ÉµÃQ£¨$4£¬\frac{6{y}_{2}}{{x}_{2}+2}$£©£¬
ÉèH£¨x£¬y£©ÎªÒÔPQΪֱ¾¶µÄÔ²ÉÏÈÎÒâÒ»µã£¬Ôò$\overrightarrow{PH}•\overrightarrow{QH}=0$£¬
¡àÒÔPQΪֱ¾¶µÄÔ²µÄ·½³ÌΪ$£¨x-4£©^{2}+£¨y-\frac{6{y}_{1}}{{x}_{1}+2}£©£¨y-\frac{6{y}_{2}}{{x}_{2}+2}£©=0$£®
Áîy=0£¬Ôò$£¨x-4£©^{2}+\frac{36{y}_{1}{y}_{2}}{£¨m{y}_{1}+3£©£¨m{y}_{2}+3£©}=0$£®
¼´$£¨x-4£©^{2}+\frac{36{y}_{1}{y}_{2}}{{m}^{2}{y}_{1}{y}_{2}+3m£¨{y}_{1}+{y}_{2}£©+9}=0$£¬
¼´$£¨x-4£©^{2}+\frac{36¡Á\frac{-9}{3{m}^{2}+4}}{{m}^{2}¡Á\frac{-9}{3{m}^{2}+4}+3m¡Á\frac{-6m}{3{m}^{2}+4}+9}=0$£¬
¼´$£¨x-4£©^{2}+\frac{-9¡Á36}{-9{m}^{2}-18{m}^{2}+27{m}^{2}+36}=0$£®
¼´£¨x-4£©2=9£¬½âµÃx=1»òx=7£®
¼´ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý£¨1£¬0£©Ó루7£¬0£©£¬
¡àµ±m±ä»¯Ê±£¬ÒÔÏ߶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊǶ¨Öµ6£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØϵµÄÓ¦Óã¬ÑµÁ·ÁËÀûÓÃбÂÊÖ¤Ã÷Èýµã¹²ÏßÎÊÌ⣬¿¼²éÁËÔ²µÄ·½³ÌµÄÓ¦Óã¬Ö±ÏßÓëÇúÏßÁªÁ¢£¬ÀûÓ÷½³ÌµÄ¸ùÓëϵÊýµÄ¹ØϵÇó½â£¬ÊÇ´¦ÀíÕâÀàÎÊÌâµÄ×îΪ³£Óõķ½·¨£¬µ«Ô²×¶ÇúÏßµÄÌصãÊǼÆËãÁ¿±È½Ï´ó£¬ÒªÇó¿¼Éú¾ß±¸½ÏÇ¿µÄÔËËãÍÆÀíµÄÄÜÁ¦£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø