ÌâÄ¿ÄÚÈÝ
º¯Êýf(x)=x |
1-x |
1 |
2 |
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{
bn | ||
|
¦Ë |
an |
b5 | ||
|
¦Ë |
a5 |
£¨3£©ÁÊýg(x)=[f-1(x)+f(x)]-
1-x2 |
1+x2 |
1 |
2 |
(x1-x2)2 |
x1x2 |
(x2-x3)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
| ||
8 |
·ÖÎö£º£¨1£©ÏÈÇó³öº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
(x£¾0)£®an+1=f-1(an)=
£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉf-1(x)=
(x£¾0)£¬Öª[f-1(x)]¡ä=
£¬ËùÒÔy=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
=
(x-n)£¬ÓÉ´ËÈëÊÖÄÜÇó³ö¦ËµÄÈ¡Öµ·¶Î§£®
£¨3£©g(x)=[f-1(x)+f(x)]•
=[
+
]•
=
£¬x¡Ê(0£¬1)£®ËùÒÔxn+1-xn=xn(1-xn)•
£¬ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£®ÓÉ´ËÈëÊÖÄܹ»Ö¤Ã÷
+
+¡+
£¼
£®
x |
1+x |
an |
1+an |
£¨2£©ÓÉf-1(x)=
x |
1+x |
1 |
(1+x)2 |
n |
n+1 |
1 |
(1+n)2 |
£¨3£©g(x)=[f-1(x)+f(x)]•
1-x2 |
1+x2 |
x |
1+x |
x |
1-x |
1-x2 |
1+x2 |
2x |
1+x2 |
1+xn | ||
|
(x1-x2)2 |
x1x2 |
(x2-x3)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
| ||
8 |
½â´ð£º½â£º£¨1£©Áîy=
£¬½âµÃx=
£»ÓÉ0£¼x£¼1£¬½âµÃy£¾0£®
¡àº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
(x£¾0)£®
Ôòan+1=f-1(an)=
£¬
-
=1£®
¡à{
}ÊÇÒÔ2ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬¹Êan=
£®£¨4·Ö£©
£¨2£©¡ßf-1(x)=
(x£¾0)£¬¡à[f-1(x)]¡ä=
£¬
¡ày=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
=
(x-n)£¬
Áîx=0µÃbn=
£®¡à
-
=n2-¦Ë(n+1)=(n-
)2-¦Ë-
£®
¡ß½öµ±n=5ʱȡµÃ×îСֵ£¬¡à4.5£¼
£¼5.5£®
¡à¦ËµÄÈ¡Öµ·¶Î§Îª£¨9£¬11£©£¨8·Ö£©
£¨3£©g(x)=[f-1(x)+f(x)]•
=[
+
]•
=
£¬x¡Ê(0£¬1)£®
ËùÒÔxn+1-xn=xn(1-xn)•
£¬
ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£¨10·Ö£©
ÏÔÈ»1£¾xn+1£¾xn£¾x2£¾
£®xn+1-xn=xn(1-xn)•
¡Ü
•
£¼
•
=
¡à
=
(xn+1-xn)=(xn+1-xn)(
-
)£¼
(
-
)
¡à
+
++
£¼
[(
-
)+(
-
)++(
-
)]
=
(
-
)=
(2-
)£¨12·Ö£©
¡ß
£¼xn+1£¼1£¬¡à1£¼
£¼2£¬¡à0£¼2-
£¼1
¡à
+
++
=
(2-
)£¼
£¨14·Ö£©
x |
1-x |
y |
1+y |
¡àº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
x |
1+x |
Ôòan+1=f-1(an)=
an |
1+an |
1 |
an+1 |
1 |
an |
¡à{
1 |
an |
1 |
n+1 |
£¨2£©¡ßf-1(x)=
x |
1+x |
1 |
(1+x)2 |
¡ày=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
n |
n+1 |
1 |
(1+n)2 |
Áîx=0µÃbn=
n2 |
(1+n)2 |
bn | ||
|
¦Ë |
an |
¦Ë |
2 |
¦Ë2 |
4 |
¡ß½öµ±n=5ʱȡµÃ×îСֵ£¬¡à4.5£¼
¦Ë |
2 |
¡à¦ËµÄÈ¡Öµ·¶Î§Îª£¨9£¬11£©£¨8·Ö£©
£¨3£©g(x)=[f-1(x)+f(x)]•
1-x2 |
1+x2 |
x |
1+x |
x |
1-x |
1-x2 |
1+x2 |
2x |
1+x2 |
ËùÒÔxn+1-xn=xn(1-xn)•
1+xn | ||
|
ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£¨10·Ö£©
ÏÔÈ»1£¾xn+1£¾xn£¾x2£¾
1 |
2 |
1+xn | ||
|
1 |
4 |
1 | ||
xn+1+
|
1 |
4 |
1 | ||
2
|
| ||
8 |
¡à
(xn+1-xn)2 |
xnxn+1 |
xn+1-xn |
xnxn+1 |
1 |
xn |
1 |
xn+1 |
| ||
8 |
1 |
xn |
1 |
xn+1 |
¡à
(x1-x2)2 |
x1x2 |
(x2-x3)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
| ||
8 |
1 |
x1 |
1 |
x2 |
1 |
x2 |
1 |
x3 |
1 |
xn |
1 |
xn+1 |
=
| ||
8 |
1 |
x1 |
1 |
xn+1 |
| ||
8 |
1 |
xn+1 |
¡ß
1 |
2 |
1 |
xn+1 |
1 |
xn+1 |
¡à
(x1-x2)2 |
x1x2 |
(x2-x3)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
| ||
8 |
1 |
xn+1 |
| ||
8 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢Ò⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿