题目内容
(2013•揭阳一模)已知函数f(x)=
(x>0,α为常数),数列{an}满足:a1=
,an+1=f(an),n∈N*.
(1)当α=1时,求数列{an}的通项公式;
(2)在(1)的条件下,证明对?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
;
(3)若α=2,且对?n∈N*,有0<an<1,证明:an+1-an<
.
αx |
1+xα |
1 |
2 |
(1)当α=1时,求数列{an}的通项公式;
(2)在(1)的条件下,证明对?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
n(n+5) |
12(n+2)(n+3) |
(3)若α=2,且对?n∈N*,有0<an<1,证明:an+1-an<
| ||
8 |
分析:(1)当α=1时,说明数列{
}是以
=2为首项,1为公差的等差数列,然后求数列{an}的通项公式;
(2)法一:在(1)的条件下,化简数列的通项公式,利用裂项法:证明对?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
;
法二:直接利用数学归纳法的证明步骤证明即可.
(3)法一:通过α=2,化简an+1-an的表达式为
•
,利用基本不等式直接证明an+1-an<
.
法二:通过an+1=f(an)=
,以及0<an<1,说明
=
>1,an∈[
,1),n∈N*,构造函数g(x)=
,x∈[
,1),利用函数的导数,求出函数的最大值即可证明结果.
1 |
an |
1 |
a1 |
(2)法一:在(1)的条件下,化简数列的通项公式,利用裂项法:证明对?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
n(n+5) |
12(n+2)(n+3) |
法二:直接利用数学归纳法的证明步骤证明即可.
(3)法一:通过α=2,化简an+1-an的表达式为
1 |
4 |
1 | ||
an+1+
|
| ||
8 |
法二:通过an+1=f(an)=
2an | ||
1+
|
an+1 |
an |
2 | ||
1+
|
1 |
2 |
x-x3 |
1+x2 |
1 |
2 |
解答:解:(1)当α=1时,an+1=f(an)=
,两边取倒数,得
-
=1,----(2分)
故数列{
}是以
=2为首项,1为公差的等差数列,
=n+1,an=
,n∈N*.--------------(4分)
(2)证法1:由(1)知an=
,故对k=1,2,3…akak+1ak+2=
=
[
-
]-------------(6分)
∴a1a2a3+a2a3a4+…+anan+1an+2
=
[(
-
)+(
-
)+…+
-
]
=
[
-
]=
.------------------------------(9分).
[证法2:①当n=1时,等式左边=
=
,
等式右边=
=
,左边=右边,等式成立;-------------------------(5分)
②假设当n=k(k≥1)时等式成立,
即a1a2a3+a2a3a4+…+akak+1ak+2=
,
则当n=k+1时a1a2a3+a2a3a4+…+akak+1ak+2+ak+1ak+2ak+3=
+
=
=
=
=
=
这就是说当n=k+1时,等式成立,----------------------------------------(8分)
综①②知对于?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
.----(9分)]
(3)当α=2时,an+1=f(an)=
则an+1-an=
-an=an(1-an)
,-------------------(10分)
∵0<an<1,
∴an+1-an=an(1-an)
≤(
)2•
--------------------------------(11分)=
•
=
•
≤
•
=
.--------------------(13分)
∵an=1-an与an+1=
不能同时成立,∴上式“=”不成立,
即对?n∈N*,an+1-an<
.-----------------------------------------------------------(14分)
证法二:当α=2时,an+1=f(an)=
,
则an+1-an=
-an=
----------------------------------------------------(10分)
又0<an<1,∴
=
>1,
∴an+1>an,∴an∈[
,1),n∈N*------------------------------------------------(11分)
令g(x)=
,x∈[
,1),则g′(x)=
,--------------------------(12分)
当x∈[
,1),g′(x)<0,所以函数g(x)在[
,1)单调递减,故当x∈[
,1),g(x)≤
=
<
,所以命题得证------------------(14分)
所以命题得证-----------------------------------------(14分)
an |
1+an |
1 |
an+1 |
1 |
an |
故数列{
1 |
an |
1 |
a1 |
1 |
an |
1 |
n+1 |
(2)证法1:由(1)知an=
1 |
n+1 |
1 |
(k+1)(k+2)(k+3) |
1 |
2 |
1 |
(k+1)(k+2) |
1 |
(k+2)(k+3) |
∴a1a2a3+a2a3a4+…+anan+1an+2
=
1 |
2 |
1 |
2×3 |
1 |
3×4 |
1 |
3×4 |
1 |
4×5 |
1 |
(n+1)×(n+2) |
1 |
(n+2)(n+3) |
=
1 |
2 |
1 |
2×3 |
1 |
(n+2)(n+3) |
n(n+5) |
12(n+2)(n+3) |
[证法2:①当n=1时,等式左边=
1 |
2×3×4 |
1 |
24 |
等式右边=
1×(1+5) |
12×(1+2)×(1+3) |
1 |
24 |
②假设当n=k(k≥1)时等式成立,
即a1a2a3+a2a3a4+…+akak+1ak+2=
k(k+5) |
12(k+2)(k+3) |
则当n=k+1时a1a2a3+a2a3a4+…+akak+1ak+2+ak+1ak+2ak+3=
k(k+5) |
12(k+2)(k+3) |
1 |
(k+2)(k+3)(k+4) |
=
k(k+5)(k+4)+12 |
12(k+2)(k+3)(k+4) |
k3+9k2+20k+12 |
12(k+2)(k+3)(k+4) |
=
k2(k+1)+4(k+1)(2k+3) |
12(k+2)(k+3)(k+4) |
(k+1)(k+2)(k+6) |
12(k+2)(k+3)(k+4) |
(k+1)[(k+1)+5] |
12[(k+1)+2][(k+1)+3] |
这就是说当n=k+1时,等式成立,----------------------------------------(8分)
综①②知对于?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
n(n+5) |
12(n+2)(n+3) |
(3)当α=2时,an+1=f(an)=
2an | ||
1+
|
2an | ||
1+
|
1+an | ||
1+
|
∵0<an<1,
∴an+1-an=an(1-an)
1+an | ||
1+
|
an+1-an |
2 |
1+an | ||
1+
|
1 |
4 |
1+an |
(1+an)2-2(an+1)+2 |
1 |
4 |
1 | ||
an+1+
|
1 |
4 |
1 | ||
2
|
| ||
8 |
∵an=1-an与an+1=
2 |
an+1 |
即对?n∈N*,an+1-an<
| ||
8 |
证法二:当α=2时,an+1=f(an)=
2an | ||
1+
|
则an+1-an=
2an | ||
1+
|
an-
| ||
1+
|
又0<an<1,∴
an+1 |
an |
2 | ||
1+
|
∴an+1>an,∴an∈[
1 |
2 |
令g(x)=
x-x3 |
1+x2 |
1 |
2 |
-x4-4x2+1 |
(1+x2)2 |
当x∈[
1 |
2 |
1 |
2 |
1 |
2 |
| ||||
1+(
|
3 |
10 |
| ||
8 |
所以命题得证-----------------------------------------(14分)
点评:本题考查数列与函数的综合应用,数学归纳法的证明方法,构造法以及函数的导数求解函数的最大值证明不等式,基本不等式的应用,考查分析问题解决问题的能力,转化思想的应用.
练习册系列答案
相关题目