题目内容
已知函数f(x)=
(0<x<1)的反函数为f-1(x).设数列{an}满足a1=1,an+1=f-1(an)(n∈N*).
(1)求数列{an}的通项公式;
(2)已知数列{bn}满足b1=
,bn+1=(1+bn)2•f-1(bn),求证:对一切正整数n≥1都有
+
+…+
<2.
x |
1-x |
(1)求数列{an}的通项公式;
(2)已知数列{bn}满足b1=
1 |
2 |
1 |
a1+b1 |
1 |
2a2+b2 |
1 |
nan+bn |
分析:(1)由f(x)=
(0<x<1),知f-1(x)=
,所以an+1=f-1(an)⇒an=f(an+1)=-
⇒
-
=1.由此能求出数列{an}的通项公式.
(2)由bn+1=(1+bn)2•
⇒bn+1=bn(bn+1),知
=
=
=
=
=
-
,由此能够证明对一切正整数n≥1都有
+
+…+
<2.
x |
1-x |
x |
1+x |
an+1 |
an+1-1 |
1 |
an+1 |
1 |
an |
(2)由bn+1=(1+bn)2•
bn |
1+bn |
1 |
nan+bn |
1 |
1+bn |
bn |
bn+1 |
| ||
bnbn+1 |
bn+1-bn |
bnbn+1 |
1 |
bn |
1 |
bn+1 |
1 |
a1+b1 |
1 |
2a2+b2 |
1 |
nan+bn |
解答:解:(1)由f(x)=
(0<x<1)⇒f-1(x)=
,
∴an+1=f-1(an)⇒an=f(an+1)=-
⇒
-
=1.
∴{
}是以
为首项,1为公差的等差数列,
即
=1+(n-1)×1=n.∴an=
.
(2)由已知得bn+1=(1+bn)2•
⇒bn+1=bn(bn+1),显然bn∈(0,+∞).
∴
=
=
=
=
=
-
,
∴
+
+…+
=(
-
)+(
-
)+…+(
-
)=
-
=2-
<2.
x |
1-x |
x |
1+x |
∴an+1=f-1(an)⇒an=f(an+1)=-
an+1 |
an+1-1 |
1 |
an+1 |
1 |
an |
∴{
1 |
an |
1 |
a1 |
即
1 |
an |
1 |
n |
(2)由已知得bn+1=(1+bn)2•
bn |
1+bn |
∴
1 |
nan+bn |
1 |
1+bn |
bn |
bn+1 |
| ||
bnbn+1 |
bn+1-bn |
bnbn+1 |
1 |
bn |
1 |
bn+1 |
∴
1 |
a1+b1 |
1 |
2a2+b2 |
1 |
nan+bn |
1 |
b1 |
1 |
b2 |
1 |
b2 |
1 |
b3 |
1 |
bn |
1 |
bn+1 |
1 |
b1 |
1 |
bn+1 |
1 |
bn+1 |
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目