题目内容

已知函数f(x)=
x
1-x
(0<x<1)
的反函数为f-1(x).设数列{an}满足a1=1,an+1=f-1(an)(n∈N*).
(1)求数列{an}的通项公式;
(2)已知数列{bn}满足b1=
1
2
bn+1=(1+bn)2f-1(bn)
,求证:对一切正整数n≥1都有
1
a1+b1
+
1
2a2+b2
+
+
1
nan+bn
<2
分析:(1)由f(x)=
x
1-x
(0<x<1)
,知f-1(x)=
x
1+x
,所以an+1=f-1(an)⇒an=f(an+1)=-
an+1
an+1-1
1
an+1
-
1
an
=1
.由此能求出数列{an}的通项公式.
(2)由bn+1=(1+bn)2
bn
1+bn
bn+1=bn(bn+1)
,知
1
nan+bn
=
1
1+bn
=
bn
bn+1
=
b
2
n
bnbn+1
=
bn+1-bn
bnbn+1
=
1
bn
-
1
bn+1
,由此能够证明对一切正整数n≥1都有
1
a1+b1
+
1
2a2+b2
+
+
1
nan+bn
<2
解答:解:(1)由f(x)=
x
1-x
(0<x<1)
f-1(x)=
x
1+x

an+1=f-1(an)⇒an=f(an+1)=-
an+1
an+1-1
1
an+1
-
1
an
=1

{
1
an
}
是以
1
a1
为首项,1为公差的等差数列,
1
an
=1+(n-1)×1=n
.∴an=
1
n

(2)由已知得bn+1=(1+bn)2
bn
1+bn
bn+1=bn(bn+1)
,显然bn∈(0,+∞).
1
nan+bn
=
1
1+bn
=
bn
bn+1
=
b
2
n
bnbn+1
=
bn+1-bn
bnbn+1
=
1
bn
-
1
bn+1

1
a1+b1
+
1
2a2+b2
+
+
1
nan+bn
=(
1
b1
-
1
b2
)+(
1
b2
-
1
b3
)+
+(
1
bn
-
1
bn+1
)
=
1
b1
-
1
bn+1
=2-
1
bn+1
<2
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网