题目内容

【题目】为评估大气污染防治效果,调查区域空气质量状况,某调研机构从两地分别随机抽取了天的观测数据,得到两地区的空气质量指数(AQI),绘制如图频率分布直方图:

根据空气质量指数,将空气质量状况分为以下三个等级:

空气质量指数(AQI

空气质量状况

优良

轻中度污染

中度污染

1)试根据样本数据估计地区当年(天)的空气质量状况优良的天数;

2)若分别在两地区上述天中,且空气质量指数均不小于的日子里随机各抽取一天,求抽到的日子里空气质量等级均为重度污染的概率.

【答案】1274天(2

【解析】

1)从地区选出的20天中随机选出一天,这一天空气质量状况“优良”的频率为0.75,由估计地区当年天)的空气质量状况“优良”的频率为0.75,从而能求出地区当年天)的空气质量状况“优良”的天数.

220天中空气质量指数在内为3个,设为,空气质量指数在内为1个,设为20天中空气质量指数在内为2个,设为,空气质量指数在内为3个,设为,设“两地区的空气质量等级均为“重度污染””为,利用列举法能求出两地区的空气质量等级均为“重度污染”的概率.

解:(1)从地区选出的天中随机选出一天,这一天空气质量状况优良的频率为

估计地区当年(天)的空气质量状况优良的频率为地区当年(天)的空气质量状况优良的天数约为.

2天中空气质量指数在内,为个,设为,空气质量指数在内,为个,设为天中空气质量指数在内,为个,设为,空气质量指数在内,为个,设为,设两地区的空气质量等级均为重度污染””,则基本事件空间

基本事件个数为,包含基本事件个数

所以两地区的空气质量等级均为重度污染的概率为.

练习册系列答案
相关题目

【题目】某工厂有两台不同机器生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.

1)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为机器生产的产品比机器生产的产品好;

生产的产品

生产的产品

合计

良好以上(含良好)

合格

合计

2)根据所给数据,以事件发生的频率作为相应事件发生的概率,从两台不同机器生产的产品中各随机抽取2件,求4件产品中机器生产的优等品的数量多于机器生产的优等品的数量的概率;

3)已知优秀等级产品的利润为12/件,良好等级产品的利润为10/件,合格等级产品的利润为5/件,机器每生产10万件的成本为20万元,机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?

附:独立性检验计算公式:.

临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网