题目内容

【题目】在等比数列{an}中,前7项和S7=16,又a12+a22+…+a72=128,则a1﹣a2+a3﹣a4+a5﹣a6+a7=(
A.8
B.
C.6
D.

【答案】A
【解析】解答:∵S7= , ∴a12+a22+…+a72= = =128,

则a1﹣a2+a3﹣a4+a5﹣a6+a7=(a1﹣a2)+(a3﹣a4)+(a5﹣a6)+a7
=a1(1﹣q)+a1q2(1﹣q)+a1q4(1﹣q)+a1q6= +a1q6
= ;故选A
分析:把已知的前7项和S7=16利用等比数列的求和公式化简,由数列{an2}是首项为a1 , 公比为q2的等比数列,故利用等比数列的求和公式化简a12+a22+…+a72=128,变形后把第一个等式的化简结果代入求出 的值,最后把所求式子先利用等比数列的通项公式化简,把前六项两两结合后,发现前三项为等比数列,故用等比数列的求和公式化简,与最后一项合并后,将求出 的值代入即可求出值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网