题目内容
【题目】某校高三实验班的60名学生期中考试的语文、数学成绩都在内,其中语文成绩分组区间是:,,,,.其成绩的频率分布直方图如图所示,这60名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示:
分组区间 | |||||
24 | 3 | ||||
数学人数 | 12 | 4 |
(1)求图中的值及数学成绩在的人数;
(2)语文成绩在的3名学生均是女生,数学成绩在的4名学生均是男生,现从这7名学生中随机选取4名学生,事件为:“其中男生人数不少于女生人数”,求事件发生的概率;
(3)若从数学成绩在的学生中随机选取2名学生,且这2名学生中数学成绩在的人数为,求的分布列和数学期望.
【答案】(1)数学成绩在的人数为8人(2)(3)详见解析
【解析】
(1)由根据频率分布直方图的性质,求得,再根据频率分布直方图数据,即可求解;
(2)由事件可分为①2个男生,2个女生;②3个男生1个女生;③4个男生三种情况,即可求解相应的概率;
(3)由题意,得到可能取值有,求得相应的概率,求得随机变量的分布列,利用期望的公式,即可求解.
(1)由题意,根据频率分布直方图的性质,
可得,解得.
则语文成绩在,,,,中的人数分别为,
则数学成绩在,,,,中的人数分别
为,
所以数学成绩在的人数为8人.
(2)从这7名学生中随机选取4名学生,事件为:“其中男生人数不少于女生人数”,
可分为①2个男生,2个女生;②3个男生1个女生;③4个男生,三种情况:
所以事件发生的概率.
(3)由题意可知可能取值有0,1,2.
,,,
的分布列为
0 | 1 | 2 | |
所以.
【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:
时间(分钟) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
答对人数 | 98 | 70 | 52 | 36 | 30 | 20 | 15 | 11 | 5 | 5 |
1.99 | 1.85 | 1.72 | 1.56 | 1.48 | 1.30 | 1.18 | 1.04 | 0.7 | 0.7 |
时间与答对人数的散点图如图:
附:,,,,,对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.请根据表格数据回答下列问题:
(1)根据散点图判断,与,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果,建立与的回归方程;(数据保留3位有效数字)
(3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:,)
【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据(单位:十亿元).绘制如下表1:
表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额 | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示.
把销售超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率.
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为,.