题目内容
【题目】已知函数,,在处的切线方程为
(1)若,证明:;
(2)若方程有两个实数根,,且,证明:
【答案】(1)见解析(2)见解析
【解析】
Ⅰ求得的导数,可得切线的斜率和切点,由切线方程可得的解析式,令,求得导数和单调性,即可得证;
Ⅱ设在处的切线方程为,可得,令,求得导数和单调性,运用函数方程的转化,以及函数的单调性的运用,即可得证.
Ⅰ由题意,所以,
又,所以,
若,则,与矛盾,故,;
可知,,,由,可得,
令,,
当时,,
当时,设,,
故函数在上单调递增,又,
所以当时,,当时,,
所以函数在区间上单调递减,在区间上单调递增,
故,即,
故;
Ⅱ设在处的切线方程为,
易得,,令,
即,,
当时,,
当时,设,,
故函数在上单调递增,又,
所以当时,,当时,,
所以函数在区间上单调递减,在区间上单调递增,
故F,,
设的根为,则,
又函数单调递减,故,故,
设在处的切线方程为,易得,
由Ⅰ得,设的根为,则,
又函数单调递增,故,故,
又,.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:)的影响,对近年的年宣传费和年销售量作了初步统计和处理,得到的数据如下:
年宣传费(单位:万元) | ||||
年销售量(单位:) |
,.
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于的线性回归方程;
(3)若公司计划下一年度投入宣传费万元,试预测年销售量的值.
参考公式
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.