题目内容
【题目】为了推进课堂改革,提高课堂效率,银川一中引进了平板教学,开始推进“智慧课堂”改革.学校教务处为了了解我校高二年级同学平板使用情况,从高二年级923名同学中抽取50名同学进行调查.先用简单随机抽样从923人中剔除23人,剩下的900人再按系统抽样方法抽取50人,则在这923人中,每个人被抽取的可能性 ( )
A.都相等,且为B.不全相等C.都相等,且为D.都不相等
【答案】C
【解析】
系统抽样方法是一个等可能的抽样,故每个个体被抽到的概率都是相等的,结合概率的定义,即可判断每个个体被抽取的概率。
因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,
所以每个个体被抽到包括两个过程;一是被剔除,二是被选中,这两个过程是相互独立的,
所以每人入选的概率
故选:C
练习册系列答案
相关题目
【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.
上架时间 | 2 | 4 | 6 | 8 | 10 | 12 |
销售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中销售量的平均数和中位数;
(2)① 作出散点图,并判断变量与是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程;
②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.
附:线性回归方程中, .