题目内容
【题目】如图1,直线将矩形分为两个直角梯形和,将梯形沿边翻折,如图2,在翻折过程中(平面和平面不重合),下列说法正确的是( )
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.存在某一位置,使得
D.在翻折过程中,恒有直线平面
【答案】D
【解析】
根据线线、线面、面面有关定理,对选项逐一分析,由此确定正确选项.
对于A选项,假设存在某一位置,使得平面,由于平面平面,根据线面平行的性质定理有,由图可知这与四边形是直角梯形矛盾,故A选项错误.
对于B选项,假设存在某一位置,使得平面,则,由图可知这与四边形是直角梯形矛盾,故B选项错误.
对于C选项,根据异面直线的知识可知,与是异面直线,故C选项错误.
对于D选项,由于,所以平面平面,所以在翻折过程中,恒有直线平面.
故选:D
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩服从正态分布,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为,求的数学期望.
附:若随机变量服从正态分布,则,,.
参考公式与临界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:
打卡天数 | 17 | 18 | 19 | 20 | 21 |
男生人数 | 3 | 5 | 3 | 7 | 2 |
女生人数 | 3 | 5 | 5 | 7 | 3 |
(1)根据上表数据,求该幼儿园男生平均打卡的天数;
(2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.