题目内容

已知在长方体中,点为棱上任意一点,.

(Ⅰ)求证:平面平面
(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值.

(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为

解析试题分析:(Ⅰ)求证:平面平面,证明两个平面垂直,只需证明一个平面过另一个平面的垂线即可,由长方体的性质,易证平面,从而可证平面平面;(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值,求二面角问题,可用传统方法,找二面角的平面角,但本题不易找,另一种方法,用向量法,本题因为是长方体,容易建立空间坐标系,以轴,以轴,以轴建立空间直角坐标系,分别设出两个平面的法向量,利用向量的运算,求出向量,即可求出二面角的余弦值.
试题解析:(Ⅰ)为正方形                      2分
平面                         4分
平面  平面平面      6分
(Ⅱ)建立以轴,以轴,以轴的空间直角坐标系     7分
设平面的法向量为
                    9分
设平面的法向量为
                      11分
                             13分
二面角的余弦值为                     14分
考点:面面垂直,二面角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网