题目内容
【题目】已知函数y=2|x|﹣4的图象与曲线C:x2+λy2=4恰有两个不同的公共点,则实数λ的取值范围是( )
A.[﹣ , )
B.[﹣ , ]
C.(﹣∞,﹣ ]∪(0, )
D.(﹣∞,﹣ ]∪[ ,+∞)
【答案】A
【解析】解:由y=2x﹣4可得,x≥0时,y=2x﹣4;x<0时,y=﹣2x﹣4, ∴函数y=2x﹣4的图象与方程x2+λy2=4的曲线必相交于(±2,0),如图.
所以为了使函数y=2x﹣4的图象与方程x2+λy2=4的曲线恰好有两个不同的公共点,
则将y=2x﹣4代入方程x2+λy2=4,
整理可得(1+4λ)x2﹣16λx+16λ﹣4=0,
当λ=﹣ 时,x=2满足题意,
∵函数y=2x﹣4的图象与曲线C:x2+λy2=4恰好有两个不同的公共点,
∴△>0,2是方程的根,
∴ <0,即﹣ <λ< 时,方程两根异号,满足题意;
综上知,实数λ的取值范围是[﹣ , ).
故选:A.
练习册系列答案
相关题目