题目内容
【题目】在数列{an}和{bn}中,a1= ,{an}的前n项为Sn , 满足Sn+1+( )n+1=Sn+( )n(n∈N*),bn=(2n+1)an , {bn}的前n项和为Tn .
(1)求数列{bn}的通项公式bn以及Tn .
(2)若T1+T3 , mT2 , 3(T2+T3)成等差数列,求实数m的值.
【答案】
(1)解:∵Sn+1+( )n+1=Sn+( )n(n∈N*),∴an+1=Sn+1﹣Sn= ﹣ = .
∴n≥2时,an= ,又a1= ,因此n=1时也成立.
∴an= ,
∴bn=(2n+1)an=(2n+1)× .
∴Tn= + + +…+ ,
= +…+ + ,
∴ = ﹣ = +2× ﹣ ,
∴Tn=5﹣
(2)解:由(1)可得:T1= ,T2= ,T3= .
∵T1+T3,mT2,3(T2+T3)成等差数列,∴ + +3×( + )=2× ,
解得m=
【解析】(1)由Sn+1+( )n+1=Sn+( )n(n∈N*),可得an+1=Sn+1﹣Sn= .可得an= ,bn=(2n+1)an=(2n+1)× .利用“错位相减法”与等比数列的求和公式即可得出.(2)由(1)可得:T1= ,T2= ,T3= .利用T1+T3 , mT2 , 3(T2+T3)成等差数列,即可得出.
【考点精析】本题主要考查了数列的前n项和和等差数列的性质的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.
练习册系列答案
相关题目