搜索
题目内容
设
∈(0,
),方程
表示焦点在x轴上的椭圆,则
的取值范围是( )
A.(0,
B.(
,
)
C.(0,
)
D.[
,
)
试题答案
相关练习册答案
B
依题意可得,
。因为
,所以
,故选B
练习册系列答案
零失误分层训练系列答案
黄冈密卷系列答案
自主创新课时作业系列答案
世纪金榜金榜小博士系列答案
培优竞赛超级课堂系列答案
黄冈小状元达标卷系列答案
黄冈冠军课课练系列答案
高效精练系列答案
练与测联动课堂系列答案
赢在新课堂系列答案
相关题目
(本小题满分14分)
给定椭圆
:
. 称圆心在原点
,半径为
的圆是椭圆
的“准圆”. 若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过动点
作直线
,使得
与椭圆
都只有一个交点,试判断
是否垂直?并说明理由.
中心点在原点,准线方程为
,离心率为
的椭圆方程是( )
A.
B.
C.
D.
椭圆C:
,
为椭圆C的两焦点,P为椭圆C上一点,连接
并
延长交椭圆于另外一点Q,则⊿
的周长_______
(本小题满分14分)已知椭圆
:
两个焦点之间的距离为2,且其离心率为
.
(Ⅰ) 求椭圆
的标准方程;
(Ⅱ) 若
为椭圆
的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足
,求
外接圆的方程.
(本小题满分12分)如图,椭圆
的中心在坐标原点,其中一个焦点为圆
的圆心,右顶点是圆F与x轴的一个交点.已知椭圆
与直线
相交于A、B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
面积的最大值;
(本小题满分14分)
设
上的两点,
满足
,椭圆的离心率
短轴长为2,0为坐标原点.
(1)求椭圆的方程;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
若焦点在
轴上的椭圆
的离心率为
,则
的值是___________。
中心在原点O,焦点F
1
、F
2
在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总